High time we had a complete explanation up here.
Question type:
Inferencekeywords:
from statements above, which follows logically?Reading Task:
Peruse the facts. Be on the lookout for ways to combine claims (usually via Conditional, Causal, Contrast, or Quantitative language). But don't force it if it's not there.
Analysis of the info:
The clue-word here would be "nevertheless", suggesting that the Inference will come from straddling the contrasting claims.
Example:
Helen is a mean teacher. Nevertheless, she gives her students candy.
Possible Inference:
Giving students candy is not incompatible with being a mean teacher.
ANSWER CHOICES
(the cheat code for easier Inference questions is simply to avoid strong claims. The safer a claim is, the easier it is to prove)
(A) The HISTORY of X is CHARACTERIZED by Y
Wowsers. I thought we just read about Newton and Einstein. How do we know what has been
typical throughout the history of science.
(B) Having X is no guarantee of Y
Crazy weak claim. All you need to prove that claim is ONE example in which you have X but do NOT have Y.
Do we have one example of something that had "long-standing success/substantiation in physics" but did NOT "continue to be dominant indefinitely"?
Yes, Newtonian physics. It was SURPASSED by Einstein's physics, thus it did not continue to dominate indefinitely.
And notice that this answer just straddles the Contrast made by 'nevertheless'.
(C) Every X will always be Y
Crazy extreme. We only had info about two theories. Can't extrapolate some permanent rule.
(D) If a theory is accepted, then it's certain to be dominant for centuries?
Conditional claims are always extreme because they imply certainty. Einstein's theory may only last a century. Who knows? And who knows about any other accepted theory?
(E) Again a conditional rule.
We were just told about two theories and were given no language that allows us to extrapolate to any other situation.
Hope this helps