Here's a question i encountered in MCAT #2:
If x, y, and z are integers greater than 1, and (327)(510)(z) = (58)(914)(xy), then what is the value of x?
(1) y is prime
(2) x is prime
Explaination is:
The best way to answer this question is to use the rules of exponents to simplify the question stem, then analyze each statement based on the simplified equation.
(327)(510)(z) = (58)(914)(xy) Simplify the 914
(327)(510)(z) = (58)(328)(xy) Divide both sides by common terms 58, 327
(52)(z) = 3xy
(1) INSUFFICIENT: Analyzing the simplified equation above, we can conclude that z must have a factor of 3 to balance the 3 on the right side of the equation. Similarly, x must have at least one factor of 5. Statement (1) says that y is prime, which does no tell us how many fives are contained in x and z.
For example, it is possible that x = 5, y = 2, and z = 3:
52 · 3 = 3 · 52
It is also possible that x = 25, y = 2, and z = 75:
52 · 75 = 3 · 252
52 · 52 · 3 = 3 · 252
(2) SUFFICIENT: Analyzing the simplified equation above, we can conclude that x must have a factor of 5 to balance out the 52 on the left side. Since statement (2) says that x is prime, x cannot have any other factors, so x = 5. Therefore statement (2) is sufficient.
The correct answer is B.
I think this is wrong because:
The condition says nothing about Z
What if Z = 2 (5^-2)(3)
Then we have:
3(X^Y) = 2 (5^-2) (3) (5^2)
=> (X^Y) = 2
Since X is prime: If X = 2, Y = 1, this is satisfied.
Similarly by playing with Z we can get n number of answers
Hence insufficient and IMO answer is (E)....anybody?