Source: GMAT Prep Test 1
If x does not equal 0, then square root of x^2/x =
a. -1
b. 0
c. 1
d. x
e. |x|/x
OA: E
Please advise, thanks.
mukund.jagadish Wrote:Source: GMAT Prep Test 1
If x does not equal 0, then square root of x^2/x =
a. -1
b. 0
c. 1
d. x
e. |x|/x
OA: E
Please advise, thanks.
eduardo_holsch Wrote:Hello, I think I understand the explanation, but I still have one question... and my thinking is as follows:
If we have (square root of x^2)/x, couldn't we square the whole fraction to get x^2/x^2... and this would equal 1 (regardless of the value of "x")?
Thanks in advance!
ryan.m.doyle Wrote:mukund.jagadish Wrote:Source: GMAT Prep Test 1
If x does not equal 0, then square root of x^2/x =
a. -1
b. 0
c. 1
d. x
e. |x|/x
OA: E
Please advise, thanks.
I saw this explanation on another board
Stuart Kovinsky -
The key to this question is recognizing that the sqrt symbol literally translates as "the positive square root of". So, if you saw a question that asks:
What's the sqrt(25), the answer would be ONLY +5.
Since we translate the notation in this manner, we know that, no matter the sign of x, sqrt(x^2) is always going to be positive. In other words, the numerator in the expression will be the absolute value of x.
So, we end up with:
|x|/x ... choose (5)
http://www.beatthegmat.com/if-x-0-then- ... 14328.html
mirzank Wrote:Need to clarify something here. Why are we only choosing the positive square root? For Gmat purposes, isn't it INSUFFICIENT to get to an answer that contains a square root since you don't know if its the positive or the negative root, unless explicitly told in question stem if we are looking at greater than 0 or less than 0?
aths Wrote:What is wrong with this...
square root of x^2/x = {(x^2)^(1/2)}/x^1
now since 2*(1/2) = 1, above equation becomes
Ans = x^1/x^1 = x^(1-1) = x^0 = 1
ANSWER = 1.
Please tell me how this is mathematically wrong....
opp Wrote:Hello,
For me both answer D and E hold true. If we assume X=1 => the expression equals X if we assume X=-1, the expression again equals X.
Could you please help to understand?
Thank you!
Inna
srimila Wrote:Hi,
Simplify Sqrt (X^2)/x = x/x
But sqrt (x) = always positive
a) Hence if X is positive, sqrt (x^2)/x = positive(x)/positive (x) = positive (x/x)
b) If X is negative, sqrt (x^2)/x = positive/negative = negative (x/x).
therefore the value depends on x and the sqrt (x) = |x| and hence the answer is |x|/x.