Articles tagged "statistics"

A Memorizable List of GMAT Quant Content (Quantent)

by

Manhattan Prep GMAT Blog - A Memorizable List of GMAT Quant Content (Quantent) by Patrick Tyrrell

Even though there’s no “new math” on GMAT Quant, there is still a ton of content to keep on our radar. And just like the tragic studying for a vocab test, we’ll have to learn 200 different things, even though the test is going to only ask us 31 of those things (because we don’t know which 31 things we’ll get asked on our test day). Read more

Tackling Max/Min Statistics on the GMAT (part 3)

by

2-12-MinMaxP3

Welcome to our third and final installment dedicated to those pesky maximize / minimize quant problems. If you haven’t yet reviewed the earlier installments, start with part 1 and work your way back up to this post.

I’d originally intended to do just a two-part series, but I found another GMATPrep® problem (from the free tests) covering this topic, so here you go:

“A set of 15 different integers has a median of 25 and a range of 25. What is the greatest possible integer that could be in this set?

“(A) 32

“(B) 37

“(C) 40

“(D) 43

“(E) 50”

Here’s the general process for answering quant questions—a process designed to make sure that you understand what’s going on and come up with the best plan before you dive in and solve:

gmat1

Fifteen integers…that’s a little annoying because I don’t literally want to draw 15 blanks for 15 numbers. How can I shortcut this while still making sure that I’m not missing anything or causing myself to make a careless mistake?

Hmm. I could just work backwards: start from the answers and see what works. In this case, I’d want to start with answer (E), 50, since the problem asks for the greatest possible integer.
Read more

Tackling Max/Min Statistics on the GMAT (Part 2)

by

minLast time, we discussed two GMATPrep® problems that simultaneously tested statistics and the concept of maximizing or minimizing a value. The GMAT could ask you to maximize or minimize just about anything, so the latter skill crosses many topics. Learn how to handle the nuances on these statistics problems and you’ll learn how to handle any max/min problem they might throw at you.

Feel comfortable with the two problems from the first part of this article? Then let’s kick it up a notch! The problem below was written by us (Manhattan Prep) and it’s complicated—possibly harder than anything you’ll see on the real GMAT. This problem, then, is for those who are looking for a really high quant score—or who subscribe to the philosophy that mastery includes trying stuff that’s harder than what you might see on the real test, so that you’re ready for anything.

Ready? Here you go:

“Both the average (arithmetic mean) and the median of a set of 7 numbers equal 20. If the smallest number in the set is 5 less than half the largest number, what is the largest possible number in the set?

“(A) 40

“(B) 38

“(C) 33

“(D) 32

“(E) 30”

 

Out of the letters A through E, which one is your favorite?

You may be thinking, “Huh? What a weird question. I don’t have a favorite.”

I don’t have one in the real world either, but I do for the GMAT, and you should, too. When you get stuck, you’re going to need to be able to let go, guess, and move on. If you haven’t been able to narrow down the answers at all, then you’ll have to make a random guess—in which case, you want to have your favorite letter ready to go.

If you have to think about what your favorite letter is, then you don’t have one yet. Pick it right now.

I’m serious. I’m not going to continue until you pick your favorite letter. Got it?

From now on, when you realize that you’re lost and you need to let go, pick your favorite letter immediately and move on. Don’t even think about it.
Read more

Statistical “Combo” Problems

by

Today we’re going to talk about statistics problems in which we have to combine knowledge of more than oneconcept.Try this GMATPrep problem first; set your timer for 2 minutes and go!

Last month 15 homes were sold in Town X. The average (arithmetic mean) sale price of the homes was $150,000 and the median sale price was $130,000. Which of the following statements must be true?

I. At least one of the homes was sold for more than $165,000.

II. At least one of the homes was sold for more than 130,000 and less than 150,000.

III. At least one of the homes was sold for less than $130,000.

(A) I only

(B) II only

(C) III only

(D) I and II

(E) I and III

Sigh. I hate roman numeral questions. I have to do more work to solve the problem, and I never like that. : )

Read more